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Abstract 

The recent successes of max-plus and more general idempotent structures for attacking nonlinear 
control problems offer the potential for revolutionary improvements in our ability to design and 
implement nonlinear controls for real applications.  This effort has focused on theoretical 
foundations for the application of max-plus arithmetic in stochastic settings, as well as numerical 
methods of approximation. 
 
In addition, a number of related issues in stochastic control have been considered.  One problem 
of particular interest has been in the stability of estimation in stochastic adaptive control, and 
another has been in max-plus approaches for sensing, especially distributed sensing. 
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Objectives 

In this effort, we have pursued a number of stochastic control problems.  Our first objective has 
been in the application of max-plus methods in stochastic control.  In particular, we have sought 
understanding of distributive idempotent techniques that provide efficient computational 
approaches in stochastic control problems. 
 
In a second line of inquiry, we have also studied some stochastic adaptive control problems, 
specifically problems of adaptive disturbance cancellation. These problems arise in beam control 
for high-energy laser applications.  We have maintained close collaboration with AFRL and 
Boeing Direct Energy Systems scientists and engineers in studying these applications. 

Background 

 
The max-plus algebra involves a redefinition of arithmetic operations, for computational and 
analytical benefit.  The basic scalar set of interest is the real numbers, augmented by  : 

 
RR .  On this set, two operations,   and  , are defined by  
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It is well known that 
R forms a commutative semi-ring under these operations.  The additive 

identity is  while the multiplicative identity is 0.   Except for the additive identity, every 
element has a multiplicative inverse, suggesting that one might be able to extend the structure to a 
field structure.  However, addition in this semi-ring is idempotent, meaning that .aaa   It is 
important to note that the only rings satisfying additive idempotency are trivial; that is, the only 
element is the additive identity.  Thus, extending the semi-ring to a ring (and hence a field) is not 
a possibility.   
 
From these basic operations, standard linear algebraic objects can be built, such as matrices and 
vectors.   
 
To illustrate the application of max-plus algebraic structure, we consider a standard nonlinear 
control problem.  We begin with a dynamical system under control, of the form 
 

00 )(),,( xtxuxfx   
with a control objective given by 
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which is to be maximized of the set of admissible control functions, ).,(),( 0
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For a given control function and initial state, we denote the solution of the differential equation 
by ),,;( 00 uxtx  .  The Bellman equation of dynamic programming, given by  
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leads to a family of operators tsS , , 
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which are max-plus linear evolution operators. 
 
The dynamic programming propagation operator in the stochastic case, 





















 

s

t

ts uytsXduXgES )),,;(()(),((max)(,  , 

however, is not max-plus linear.  However, we may use the distributive property of multiplication 
over addition, to apply max-plus effectively. 
 
The max-plus distributivity principle we have developed is of the form 
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in which P(W,Z) denotes the set of probability measures on ZW   having marginal P on W. 
 
The relevance of this result arises in conjunction with max-plus finite element approximations to 
the Bellman equations. 

Max-Plus Finite Element Approximations 

Max-plus finite elements provide useful approximation tools for dynamic programming.  Within 
the context of this work, we use the finite elements in conjunction with max-plus distributivity to 
approximate solutions to the stochastic Bellman dynamic programming equation.  We have 
considered the linear elements 

iii xxcx )( , 
quadratic elements 

2)( iii xxcx  , 
and Legendre elements 

2)( xcxpx T
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In the linear and quadratic elements,  ix are the element nodes, and ic are scale parameters.  In the 
Legendre formulation, the elements A max-plus approximation of a function f takes the form 
 
 
in which the weights ia are defined by  
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 Note that a max-plus interpolation has an interesting and perhaps unintuitive structure.  Figure 1 
below illustrates the projection onto linear elements for an example function. 
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Figure 1.  Blue curve is the original function; red curve is the max-plus finite element projection. 

 
To apply the finite element method to dynamic programming, we first examine the deterministic 
Bellman equation 
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which is max-plus linear.  We plug in the finite element expansion 
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into the Bellman equation, which leads to the max-plus matrix iteration 
)()( htaBta  , 

in which the matrix B is defined by 

 ))(()(max , xSxB jhtti
x
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Our contribution on the deterministic side has been the introduction of the Legendre elements, 
which provide second order accuracy of approximation.  Our focus, however, has been on the 
stochastic control area. 

Traditional Stochastic Control Problems 

The standard stochastic control model is of the form 
00 )(,)(),( XtXdWXdtuXfdX    

in which W is a standard Brownian motion, and the standard running cost criterion is given by 
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which is to be maximized over admissible controls  
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The Bellman equation of dynamic programming (DPE) takes the form 
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in which V is the value function 
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The semigroup for backward propagation, 
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is not (necessarily) linear, because the maximization and expectation cannot be interchanged in 
order.  However, max-plus distributivity allows us some flexibility.   
 
The finite element expansion plugged into the semigroup yields 
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Applying distributivity, we have 
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in which the distributivity property of the theorem involves the set of random variables taking 
values in the set N={1,2, …, N} for the interchange of expectation and maximization order.  This 
propagation is then projected back onto the finite element basis through the relation as in the 
deterministic situation. It is interesting to note that the optimization over Q is essentially a linear 
programming problem.  
 
An alternative to applying distributivity involves the fast Legendre transform.  Given a 
discretized function on a grid in R,  nifx ii 0:),( , and discrete slope parameters 
 mipi 0: , we compute the approximate gradients  
  1,,0),/()(,, 11   njxxyyggx jjjjjjj   

and merge the two sequences g and p.  The interval  1, ii pp that contains jg provides the output 
slope of the discrete Legendre transform.  If the sequences are pre-sorted, this merge takes 

)( mnO  operations.  Similar algorithms exist for higher dimensional problems. 
 
Thus the fully discrete Legendre finite element algorithm consists of the following steps. 

1. Identify the preconditioning quadratic function that makes the value convex. 
2. Initialize at the final time T with value V=0 (or a non-zero exit time cost). 
3. Back propagate the value function on a discrete grid of points to the next earlier time. 



4. Re-project the value function onto the Legendre basis using the fast discrete Legendre 
transform. 

5. Return to 3 and repeat until the initial time is reached. 
 
 

Stochastic Adaptive Control Problems 

Another focus of this research project has been in the analysis of adaptive control problems that 
arise in pointing and tracking for high-energy lasers.  Generally speaking, these systems comprise 
a large, complex set of mechanical and electronic components.  The primary goal in tracking is to 
maintain the target of interest in the center of the focal plane of a tracking camera.  At the coarse 
physical scale of operation, this goal is attacked with a gimbal that rotates the telescope of the 
optical pointing and tracking system.  At the fine scale, actuation is achieved with a fine track 
mirror that is controlled at a much higher frequency.  In the material below, we discuss the fine 
track problem. 
 
The fine track system is typically characterized with a linear time invariant model, instantiated as 
a discrete time rational transfer function.  Of course the actual plant is the hardware: the model 
provides a means of devising control actions.  A block diagram, denoting the operation of the fine 
track loop is given in Figure 2.  The process involves an actual plant (that is, the hardware system 
to be controlled), a model of the plant, the controller, and the adaptive processing that tunes the 
gains of the controller to cancel the disturbance. 
 

Augmenting control 
u

Output y

Actual Plant G(z)

Model Plant Ĝ(z)

z -1

Adaptive Gain Tuning

Augmenting Controller F(z)

+
+

+
-

Disturbance estimate 
ŵ

Disturbance w

 

Figure 2.  Adaptive control block diagram. 

 

The actual plant is unknown and instantiated in hardware.  The model plant is a mathematical and 
computational approximation of the actual plant that must be estimated experimentally.  The 
augmenting controller attempts to produce a control signal that will cancel out the disturbance, w, 
and drive the output y to 0, using adaptive tuning of the tap weights or gains in an FIR filter.   
The model, in equation form, is given by 
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The model of the plant provides a means of estimating the disturbance and determining the 
appropriate control with which to cancel it out.  The control gains embodied in the filter F are 
determined by minimizing 

212 ,ˆ)ˆ()( wFGzIEyEFJ       

in which 

wFGzIuGwy ˆ)ˆ(ˆˆ 1              

yields an estimate of the closed-loop noise-to-track error transfer function.  Note that if we were 
to have estimated the transfer function perfectly, ( GG ˆ ), then this relationship would provide 
exactly the noise-to-output transfer function.  We should also note that if 1ˆ  GzF were 
realizable, then this feedback operator would exactly cancel the transfer function.  Since such an 
F is not causal (requiring at least one step of future data), the minimizing solution must depend on 
the disturbance.  We use recursive least squares techniques to estimate the filter F.   
 
With George Yin and Le Yi Wang of Wayne State, we have developed conditions under which 
least squares estimators converge, even under model/plant mismatch. These preliminary results 
are among the first approaches to analyzing the stability of these adaptive loops, a key issue to 
engineers building high energy laser systems.   
 
The basic problem can be written as  
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in which  denotes the model mismatch, which may depend on the “true” parameter as well as 
the exogenous sequence . Applying a traditional adaptive estimation algorithm of the form 
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leads to a biased estimator whose convergence properties are uncertain.  Using weak convergence 
techniques, we have shown that sufficiently small plant perturbations lead to convergence of the 
adaptive estimation technique. 
 
We should note that this technology has been involved in a number of transition efforts.  In fact 
the actual application of the recursive estimation algorithms has preceded the theoretical 
understanding of stability:  these algorithms have been applied by our team at White Sands 
Missile Range and Kirtland Air Force Base in laboratory field experiments, prototype strategic 
relay systems, and prototype tactical laser tracking platforms.  Our technical point of contact at 
AFRL has been Dr. Dan Herrick, and we have worked closely with Steve Baugh of Boeing 
Directed Energy Systems in transition and testing as well. 
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